Given a set of candidate numbers (candidates
) (without duplicates) and a target number (target
), find all unique combinations in candidates
where the candidate numbers sums to target
.The same repeated number may be chosen from candidates
unlimited number of times.
Note:
- All numbers (including
target
) will be positive integers. - The solution set must not contain duplicate combinations.
Example 1:
Input: candidates = [2,3,6,7] , target = 7,
A solution set is:[ [7], [2,2,3]]
Example 2:
Input: candidates = [2,3,5], target = 8A solution set is:[ [2,2,2,2], [2,3,3], [3,5]] 思路
对于在数组中进行组合查找这种类似的问题,我们可以使用递归来进行解决。因为其中同一个数字可以重复利用多次,所以对于递归的写法应该注意。解决思路主要看代码的注释。 解决代码
1 class Solution(object): 2 def combinationSum(self, nums, target): 3 """ 4 :type candidates: List[int] 5 :type target: int 6 :rtype: List[List[int]] 7 """ 8 if len(nums) < 1: # nums中数目小于1时直接返回 9 return []10 res = [] # 保存结果11 nums.sort() # 排序之后可以减少递归次数12 self.get_res(nums, res, 0, [],target) # 进行递归13 return res14 15 def get_res(self, nums, res, index, path, target):16 if target == 0: # 递归结束条件,当target等于0时,表示满足。将结果集进行添加。17 return res.append(path)18 if target < 0: # 递归结束条件,不满足直接进行返回。19 return 20 for i in range(index, len(nums)): # 因为在数组中每一个数字可以多次重复利用,所以index表示从第几个元素开始进行执行。21 if target < nums[index]: # 如果当前首元素大于target时,直接终止,避免不必要的递归22 return23 self.get_res(nums, res, i, path+[nums[i]], target-nums[i])